78 research outputs found

    A Data Fusion System to Study Synchronization in Social Activities

    Full text link
    As the world population gets older, the healthcare system must be adapted, among others by providing continuous health monitoring at home and in the city. The social activities have a significant role in everyone health status. Hence, this paper proposes a system to perform a data fusion of signals sampled on several subjects during social activities. This study implies the time synchronization of data coming from several sensors whether these are embedded on people or integrated in the environment. The data fusion is applied to several experiments including physical, cognitive and rest activities, with social aspects. The simultaneous and continuous analysis of four subjects cardiac activity and GPS coordinates provides a new way to distinguish different collaborative activities comparing the measurements between the subjects and along time.Comment: Healthcom 201

    Characterization of a Multi-User Indoor Positioning System Based on Low Cost Depth Vision (Kinect) for Monitoring Human Activity in a Smart Home

    Get PDF
    An increasing number of systems use indoor positioning for many scenarios such as asset tracking, health care, games, manufacturing, logistics, shopping, and security. Many technologies are available and the use of depth cameras is becoming more and more attractive as this kind of device becomes affordable and easy to handle. This paper contributes to the effort of creating an indoor positioning system based on low cost depth cameras (Kinect). A method is proposed to optimize the calibration of the depth cameras, to describe the multi-camera data fusion and to specify a global positioning projection to maintain the compatibility with outdoor positioning systems. The monitoring of the people trajectories at home is intended for the early detection of a shift in daily activities which highlights disabilities and loss of autonomy. This system is meant to improve homecare health management at home for a better end of life at a sustainable cost for the community

    Design and evaluation of a novel technology for ambulatory monitoring of bruxism events

    Get PDF
    International audienceBruxism is a widespread phenomenon whose diagnosis is usually made from non reliable, self-evaluation of the patient on one hand, and clinical signs whose absence does not mean absence of bruxism on the other hand. Different methods have been used in research setting for the assessment of bruxism such as portable electromyography but currently there exists no reliable method for the diagnosis of bruxism at home. In this paper, the hardware and software architecture of a complete ambulatory system, enabling long term monitoring of bruxism by measuring clenching/grinding forces of the patient is presented. The results of the tests conducted in vitro to evaluate the sensor's response are also presented. In vivo tests exhibited good correlation with an electromyography of the masseter muscle. With a maximum thickness of 2 mm, the discomfort for the patient is reduced and corresponds nearly to the usual thickness of an occlusal splint. This inductively rechargeable instrumented splint enables a long-term use over different periods and clenching/grinding data can be retrieved locally or transmitted wirelessly via WiFi, on a secured server, for further analysis

    A wearable, low-power, health-monitoring instrumentation based on a programmable system-on-chip

    Get PDF
    International audienceImprovement in quality and efficiency of health and medicine, at home and in hospital, has become of paramount importance. The solution of this problem would require the continuous monitoring of several key patient parameters, including the assessment of autonomic nervous system (ANS) activity using non-invasive sensors, providing information for emotional, sensorial, cognitive and physiological analysis of the patient. Recent advances in embedded systems, microelectronics, sensors and wireless networking enable the design of wearable systems capable of such advanced health monitoring. The subject of this article is an ambulatory system comprising a small wrist device connected to several sensors for the detection of the autonomic nervous system activity. It affords monitoring of skin resistance, skin temperature and heart activity. It is also capable of recording the data on a removable media or sending it to computer via a wireless communication. The wrist device is based on a programmable system-on-chip (PSoC) from Cypress: PSoCs are mixed-signal arrays, with dynamic, configurable digital and analogical blocks and an 8-bit microcontroller unit (MCU) core on a single chip. In this paper we present first of all the hardware and software architecture of the device, and then results obtained from initial experiments

    Un Spongiaire Sphinctozoaire colonial apparenté aux constructeurs de récifs triasiques survivant dans le bathyal de Nouvelle-Calédonie

    Get PDF
    Un second représentant actuel des Sphinctozoaires, importants constructeurs de récifs au Permo-Trias, a été découvert dans la zone bathyale de la NouvelleCalédonie. Contrairement au survivant déjà connu, #Valecetia crypta$, il a conservé le mode de croissance colonial et les capacités constructrices de ses analogues fossiles. Sa croissance est bien plus lente que celle des coraux récifaux actuels. La base d'une construction de 10 cm d'épaisseur a été datée de 700 ans. (Résumé d'auteur

    A wireless, low-power, smart sensor of cardiac activity for clinical remote monitoring

    Get PDF
    International audienceThis paper presents the development of a wireless wearable sensor for the continuous, long-term monitoring of cardiac activity. Heart rate assessment, as well as heart rate variability parameters are computed in real time directly on the sensor, thus only a few parameters are sent via wireless communication for power saving. Hardware and software methods for heart beat detection and variability calculation are described and preliminary tests for the evaluation of the sensor are presented. With an autonomy of 48 hours of active measurement and a Bluetooth Low Energy radio technology, this sensor will form a part of a wireless body network for the remote mobile monitoring of vital signals in clinical applications requiring automated collection of health data from multiple patients

    Design and Optimization of an Autonomous, Ambulatory Cardiac Event Monitor

    Get PDF
    International audienceWearable sensors for health monitoring can enable the early detection of various symptoms, and hence rapid remedial actions may be undertaken. In particular, the monitoring of cardiac events by using such wearable sensors can provide real-time and more relevant diagnosis of cardiac arrhythmias than classical solutions. However, such devices usually use batteries, which require regular recharging to ensure long-term measurements. We therefore designed and evaluated a connected sensor for the ambulatory monitoring of cardiac events, which can be used as an autonomous device without the need of a battery. Even when using off-the-shelf, low-cost integrated circuits, by optimizing both the hardware and software embedded in the device, we were able to reduce the energy consumption of the entire system to below 0.4 mW while measuring and storing the ECG on a non-volatile memory. Moreover, in this paper, a power-management circuit able to store energy collected from the radio communication interface is proposed, able to make the connected sensor fully autonomous. Initial results show that this sensor could be suitable for a truly continuous and long-term monitoring of cardiac events

    Characterization of a multi-user indoor positioning system based on low cost depth vision (Kinect) for monitoring human activity in a smart home

    Get PDF
    International audienceAn increasing number of systems use indoor positioning for many scenarios such as asset tracking, health care, games, manufacturing, logistics, shopping, and security. Many technologies are available and the use of depth cameras is becoming more and more attractive as this kind of device becomes affordable and easy to handle. This paper contributes to the effort of creating an indoor positioning system based on low cost depth cameras (Kinect). A method is proposed to optimize the calibration of the depth cameras, to describe the multi-camera data fusion and to specify a global positioning projection to maintain the compatibility with outdoor positioning systems. The monitoring of the people trajectories at home is intended for the early detection of a shift in daily activities which highlights disabilities and loss of autonomy. This system is meant to improve homecare health management at home for a better end of life at a sustainable cost for the community

    Immunosenescence in wild animals:Meta-analysis and outlook

    Get PDF
    Immunosenescence, the decline in immune defense with age, is an important mortality source in elderly humans but little is known of immunosenescence in wild animals. We systematically reviewed and meta-analysed evidence for age-related changes in immunity in captive and free-living populations of wild species (321 effect sizes in 62 studies across 44 species of mammals, birds and reptiles). As in humans, senescence was more evident in adaptive (acquired) than innate immune functions. Declines were evident for cell function (antibody response), the relative abundance of naive immune cells and an in vivo measure of overall immune responsiveness (local response to phytohaemagglutinin injection). Inflammatory markers increased with age, similar to chronic inflammation associated with human immunosenescence. Comparisons across taxa and captive vs free-living animals were difficult due to lack of overlap in parameters and species measured. Most studies are cross-sectional, which yields biased estimates of age-effects when immune function co-varies with survival. We therefore suggest longitudinal sampling approaches, and highlight techniques from human cohort studies that can be incorporated into ecological research. We also identify avenues to address predictions from evolutionary theory and the contribution of immunosenescence to age-related increases in disease susceptibility and mortality

    Homologous Recombination Is Stimulated by a Decrease in dUTPase in Arabidopsis

    Get PDF
    Deoxyuridine triphosphatase (dUTPase) enzyme is an essential enzyme that protects DNA against uracil incorporation. No organism can tolerate the absence of this activity. In this article, we show that dUTPase function is conserved between E. coli (Escherichia coli), yeast (Saccharomyces cerevisiae) and Arabidopsis (Arabidopsis thaliana) and that it is essential in Arabidopsis as in both micro-organisms. Using a RNA interference strategy, plant lines were generated with a diminished dUTPase activity as compared to the wild-type. These plants are sensitive to 5-fluoro-uracil. As an indication of DNA damage, inactivation of dUTPase results in the induction of AtRAD51 and AtPARP2, which are involved in DNA repair. Nevertheless, RNAi/DUT1 constructs are compatible with a rad51 mutation. Using a TUNEL assay, DNA damage was observed in the RNAi/DUT1 plants. Finally, plants carrying a homologous recombination (HR) exclusive substrate transformed with the RNAi/DUT1 construct exhibit a seven times increase in homologous recombination events. Increased HR was only detected in the plants that were the most sensitive to 5-fluoro-uracils, thus establishing a link between uracil incorporation in the genomic DNA and HR. Our results show for the first time that genetic instability provoked by the presence of uracils in the DNA is poorly tolerated and that this base misincorporation globally stimulates HR in plants
    • 

    corecore